
Génie logiciel
et gestion de projets

Roel Wuyts
ULB

2005/2006

http://decomp.ulb.ac.be/education/GL0506/

UML Overview
& UML Class Diagrams

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006

Object-Oriented Modelling

Question: given some problem, how to develop an
object-oriented system to address that problem ?

✦ Object-Oriented Modelling to get there

✦ Give object-oriented solution to problem

✦ Most can be used with different processes (waterfall,
incremental, ...)

✦ Will use UML diagrams

Note: other approaches could be used

✦ e.g. functional decomposition, ER diagrams, ...

2

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006

In 1994, more than 50 OO methods!

3

UML is ... unified

Meyer

Before and after
 conditions

Harel

Statecharts
Gamma, et al

Frameworks and patterns,

HP Fusion

Operation descriptions and
message numbering

Embley

Singleton classes and
high-level view

Wirfs-Brock

Responsibilities

Odell

Classification

Shlaer - Mellor

Object lifecycles

Rumbaugh

OMT

Booch

Booch method

Jacobson

OOSE

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 4

Designed by Booch, Rumbaugh, Jacobson (3 amigos)

✦ Started in 1994; version 1.0 finished in 1997

✦ Version 1.5 (1.4.2) since July 2004: current

✦ Version 2.0 in beta since 2004 - final late 2005

To end the OO method wars: standard

Standard adopted by OMG (also known from Corba)

UML History

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 5

General Goals of UML

Model systems using OO concepts

Establish an explicit coupling to conceptual as well as
executable artifacts

To create a modeling language usable by both humans
and machines

Models different types of systems (information
systems, technical systems, embedded systems, real-
time systems, distributed systems, system software,
business systems, UML itself, ...)

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006

UML Worldview

Two concepts:

✦ Views

✦ Diagrams

6

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 7

UML Views…

Each view is a projection of the complete system.

Each view highlights particular aspects of the system.

Views are described by a number of diagrams.

No strict separation, so a diagram can be part of
more than one view.

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 8

UML Views…

Use Case
View

Deployment
View

Concurrency
View

Component
View

Logical
View

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 9

Use-Case diagram (see later)

Class diagram (see later)

Object diagram

State diagram

Sequence diagram

Collaboration diagram

Activity diagram

Component diagram

Deployment diagram

UML Diagrams...

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 10

State Diagram

Represent the behaviour of a class in terms of
(evolution of) its state.

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 11

Sequence Diagram

Temporal representation of objects and their
interactions.

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 12

Collaboration Diagram

Spatial representation of objects, relations and
interactions.

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 13

Object Diagram

Represents objects and their relations; corresponds to
simplified collaboration diagrams (no message sends).

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 14

Activity Diagram

Represent the behaviour of one operation in terms of
actions.

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 15

Component Diagram

Represent the physical components of a system.

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 16

Deployment Diagram

Represent the deployment of a system on hardware.

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006

UML Metamodel

Some mental exercise:

✦ Semantic of UML diagrams is described in UML!

‣ Each diagram is an instance of a UML meta model

‣ In other words: each diagram shows a simplified view of
the meta model

‣ UML Meta Model describes all possibilities

17

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006

Common UML: Elements

Core : Element

✦ used for both model elements as visual elements

‣ model element: represents system abstraction while
modelling

‣ visual element: textual or graphical representation of a
model element that allows a user to interact

18

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006

Meta-model part: Element

19

Packet

Element

Model

Element

Visual

Element

Model

references

0..*

0..*

contains

0..*

0..1

1 0..1

0..*1..*

projects

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006

Common UML: mechanisms

Across UML, a number of common mechanisms are
used:

✦ Stereotypes

✦ Tagged Values

✦ Notes

✦ Constraints

✦ Dependency relationships

✦ (type, instance) and (type, class) dichotomies

20

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006

Meta model part: common mechanisms

21

Relation

Dependency

Model
Element

Tagged
Value

Element

classification

property

0..*

0..1 0..*

0..*

Note ConstraintStereotype

1..*

0..*

0..*

source

0..*

target

name: Name

name:

Name

0..*

0..1

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006
22

Stereotypes

✦ Allows to define a new kind of model element based
on an existing one

✦ Basically adds extra semantics

✦ There are predefined stereotypes

Stereotypes

Stereotype name Stereotype icon

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006
23

Tagged Values

Tagged values

✦ Name-value pairs of information

‣ (name, value)

✦ Hold additional information about elements

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006

Notes

Comment attached to one or more elements

Holds no semantic information, just information

✦ use stereotypes for semantic information

Graphically:

24

Note

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006
25

Constraints

Restrictions that limit the usage of an element or the
semantics of an element

No syntax specified

✦ Can be natural text, pseudo-code, mathematical
expressions, OCL (object constraint language), ...

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006

Dependency Relationships

One-directional usage relationship between two
model elements (called source and target)

Notes or constraints are valid sources for
dependency relationships

Graphical notation:

	 	 	 (client depends on provider)

26

Client Provider

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006

Common UML: Primitive Types

Primitive types:
✦ Boolean: enumerated type {true, false}
✦ Expression: string with some semantics
✦ List: ordered sequence, possible indexed
✦ Multiplicity: see next
✦ Name: string used to indicate element
✦ Point: tuple (x,y,z) that indicates point in space
✦ String: list of characters designated with a name
✦ Time: represents absolute or relative time
✦ Non-interpreted: blob

27

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006

Primitive type: multiplicity

Non-empty set of positive integers

Syntax:

multiplicity ::= [interval | number] { ‘ , ’ multiplicity}

interval ::= number ‘‘.. ’’ number

number ::= positive_number | name | ‘*’

Examples:

1

1, 3..4, 5..8

0..*

28

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006

Common UML : Packet

Groups model elements

✦ All elements belong to a package

‣ There is a root package for the system

✦ Can contain other packets, since packets are model
elements themselves

Enforces namespace

✦ Two elements in a different package can have the same
name

29

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006

Packet

Graphical notation

30

System

System

Node

String name
next : Node
accept(p : Packet)
send(p : Packet)

Client Server

Packet

contents
addressee : Node
isReceiverFor(n : Node)

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006

Package import

Elements can be shared between packages

The import relation between packages is modelled
using a dependency relationship stereotyped with import

31

Client

Provider

<<import>>

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006

Package visibility

Elements contained in a package are not visible to the
outside world

✦ except when they are declared public (using
stereotypes, for example)

✦ otherwise they are implementation (not visible)

32

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 33

Class Diagrams

Static model type

✦ A view of the system in terms of classes and
relationships

Classes not only describe attributes but also
behaviour !

Description of object types .

✦ Attributes and behaviour of a type of objects

✦ All objects are instances of a certain class

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 34

A rectangle divided into 3 compartments :

✦ name, attributes, operations

A Class in UML…

Name

attributes

operations

Uppercase, bold

lowercase
+, -, # for visibility
= for defaults
{ } for enumerations
underline : static

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 35

Some examples

Invoice

+ amount : Real
+ date : Date = Current date
+ customer : String
- administrator : String = "Unspecified"
- number of invoices : Integer
+ status : Status = unpaid {unpaid, paid}

Figure
size : Size
pos : Position
+ draw()
+ scaleFigure(percent : Integer = 25)
+ returnPos() : Position

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 36

Relationships Between Classes

An association is a connection between classes

✦ “usage”

A generalization is a relationship between a more
general and a more specific element

✦ “inheritance”

A refinement is a relationship between two
descriptions of the same thing but at different levels of
abstraction

A realization is a relationship between elements where
one carries out what the other specifies

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 37

Associations

Specify structural relationships

Specifies that objects are interconnected

Can be implemented in a lot of ways

✦ through instance variables

✦ through arguments of methods

✦ through auxiliary classes

✦ ...

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 38

Association Relationship

Drawn as line between classes

By default bidirectional

✦ but particular direction can be indicated

Can contain multiplicities

✦ a range that tells us how many objects are linked

9 examples to show different aspects and give some
additional information...

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 39

Example 1

Model the following:

✦ An author can use a computer.

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 40

Example 1 Solution

association

association
name

association
direction

Author Computeruses

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006

On association directions...

41

Author Computeruses

Author Computeruses

Author Computeruses

Author Computeruses >

✕
✓

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 42

Example 2

Model the following:

✦ A user can own 0 or more cars. Each car is owned by
1 or more persons

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 43

Solution Example 2

Multiplicities

A Person Owns 0 or many Cars
A Car is Owned by 1 or many Persons

Person CarOwns

Owned By
0..*

1..*

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 44

Common Multiplicities

(See primitive types for all possibilities)

Multiplicity Notation

optional 0..1

zero or more 0..* or *

at least one 1..*

exactly one 1 or left blank

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 45

Example 3

Model the following:

✦ Nodes can be connected to other nodes.

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 46

Recursive association: connecting a class to itself

Recursive Associations

Node

Connects

*

*

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 47

Example 4

Model the following:

✦ A Canvas contains many Figures which are identified
by an identifier

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 48

Specifies how a certain object at the many end is
identified (+/- a key)

A Canvas contains many Figures which
are identified by a figure id

Qualified Associations

Canvas Figure*
figure id

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006

Qualified associations as restrictions

Qualified association subdivides the referenced set of
objects into partitions where, viewed from the initial
object, each partition may occur only once

Example: employees are partitioned: all employees
with the same initials belong to one partition

49

Company

name
address

Employee

nameemploys >

*1
initials

company initials employee

ULB RW Roel Wuyts

ULB TM Thierry Massart

UMH TM Tom Mens

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 50

Example 5

Model the following:
✦ An insurance company has insurance contracts, which

refer to one or more customers.

‣ A customer has insurance contracts (zero or more),
which refer to one insurance company.

‣ An insurance contract is between an insurance company
and one or more customers. The insurance contract
refers to both a customer (or customers) and an
insurance company.

‣ The insurance contract is expressed in an (zero or one)
insurance policy (a written contract of insurance). The
insurance policy refers to the insurance contract.

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 51

Example 5 solution

Insurance
Company

Insurance
Policy

Insurance
Contract

*

1..*

has
refers to

Customer

0..1

is expressed in
expresses an

1..*has

refers to

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 52

Example 6

Model the following:

✦ An insurance contract belongs to a customer or to a
company. A customer can have multiple insurances. An
insurance contract has an ordered collection of 1 or
more customers.

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 53

Put constraint between the associations

Example 6: ‘or’ associations

constraints

Insurance
Company

Insurance
Contract

*

1..*

has
refers to

Customer

1..*
has

refers to

{ or }

{ ordered }

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 54

Other constraints

Some widely used constraints:

✦ {ordereded}, {or}, {xor}
✦ {implicit} : specifies that the relationship is not

manifest but, rather, is only conceptual
✦ {changeable}: Links between objects may be added,

removed, and changed freely
✦ {addonly}: New links may be added from an object on

the opposite end of the association
✦ {frozen}: A link, once added from an object on the

opposite end of the association, may not be modified
or deleted

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 55

Example 7

Model the following:

✦ An elevator control manipulates four elevators. On
each link between the elevators and the elevator
conrol, there is a queue. Each queue stores the
requests from both the elevator control and the
elevator itself. When the elevator control chooses an
elevator to perform a request from a passenger
outside the elevator, the elevator control reads each
queue and choses the elevator that has the shortest
queue. The choice could also be made using some
clever algorithm.

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 56

Example 8: association classes

class Queue is needed
for the association (can

have state/methods
needed to implement the

algorithm)

Elevator

Controller
Elevator

Queue

4controls

controlled by

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006

Example 8

A reservation on a passanger train consists of a
passanger (for whom the seat is reserved), a seat
(which is being reserved), and a train (time of
reservation). Besides such simple reservations, group
reservations are also allowed. Who will actually
occupy which seat is left over to the group.

57

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 58

Example 9: ternary associations

ternary association

Train
date
number

Seat
CarriageNumber
Number

1..*1

Passenger
name

title

1..*

Reservation

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006

n-ary associations

Associations in general relate n classes

✦ Most of them are binary, but three (as in previous
example) or more are possible

Can usually be transformed in binary associations:

59

Train
date
number

Seat
CarriageNumber
Number

1..**1 *

Passenger
name

title

1..*

*

Reservation

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 60

A whole-part association (whole owns the part)

Describes different levels of abstraction

Aggregation

whole part

aggregation

Note: Diamond can only be at one end!

Navy
Contains

* Warship

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 61

The parts can only exist if the whole exists

✦ they are destroyed with the whole

Composition Aggregation`…

* Text

Window

Listbox

Button

Menu*

*

*

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 62

Other notations expressing the same:

Composition Aggregation…

* Text

Window

Listbox

Button

Menu*

*

*

Contains

Window

Text

Listbox

Button

Menu

*

*

*

*

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 63

Shared Aggregation

Part may be part of several wholes

Shared Aggregation

A shared aggregation is one in which the parts may be parts in

any wholes, as shown in Figure 18. That an aggregation is

shared is shown by its mul tiplicity. The aggregation is shared

if the multiplicity on the wholeside is other than one (1).

Shared aggregation is a special case of a normal aggregation.

 * *

 Members

Figure 18 A Shared Aggregate Relationship

Figure 19 shows a remix is composed of many sound clips; the

same sound track could be a part of many remixes.

 * {ordered} *

 Contains

Figure 19 A Shared Aggregate Relationship

Team Person

Remix Sound clips

Shared Aggregation

A shared aggregation is one in which the parts may be parts in

any wholes, as shown in Figure 18. That an aggregation is

shared is shown by its mul tiplicity. The aggregation is shared

if the multiplicity on the wholeside is other than one (1).

Shared aggregation is a special case of a normal aggregation.

 * *

 Members

Figure 18 A Shared Aggregate Relationship

Figure 19 shows a remix is composed of many sound clips; the

same sound track could be a part of many remixes.

 * {ordered} *

 Contains

Figure 19 A Shared Aggregate Relationship

Team Person

Remix Sound clips

* : shared aggregation

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 64

Association or Aggregation?

The decision to use association or aggregation is a
matter of judgment and is often arbitrary

E.g. What type of relationship should be used to
model a car with its tires?

✦ If the application is a service center, the only reason
you care about the tire is because it is part of the car,
so use an aggregation

✦ If the application is a tire store, you will care about the
tire independent of the car, then the relationship
should be an association.

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 65

Recap: associations

Connect classes

✦ between 1, 2, 3, ... classes

Can contain multiplicities, directions, role names

Constraints can be used to express additional
requirements (more on constraints later)

Association classes can be used for more difficult
associations that have behaviour from their own

Aggregation: part-whole composition

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 66

Inheritance, ‘is-a’ relationship

The more specific may be used where the more
general is allowed

Remember : Using Inheritance for code reuse, or just
because it looks nice is a dangerous practice !

Generalization…

Boat TruckCar

Vehicle

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 67

Refinement

“A relationship that represents a fuller specification of
something that has already been specified at a certain
level of detail.”

Usefull for modelling

✦ a relation between the analysis version and the design
version, or between a clean implementation and an
optimized but potentially difficult variation

A B<<refine>>

B refines A

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 68

Class refinement examples

Segment
length: Number
stretch(k : Integer)

Segment'
xInitial: Number
xFinal: Number
stretch(k : Integer)

<<refine>>

length = xFinal - xInitial

Person
name: String
address: Address
livesIn(location: String) : Boolean
addresStreetName : String
firstName: String
lastName: String
printOn(Stream s)Person

<<refine>>

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 69

Realization

“A semantic relationship between classifiers in which
one classifier specifies a contract that another
classifier guarantees to carry out”

realization

IRuleAgent

addRule()
changeRule()
explainAction()

AccountBusinessRules

service
description implementor

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006

Implementing realization

In Java: implemented with interfaces

In C++: implemented with fully abstract classes

70

<<interface>>
IRuleAgent

addRule()
changeRule()
explainAction()

AccountBusinessRules

IRuleAgent

addRule()
changeRule()
explainAction()

AccountBusinessRules

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006

Take care

In older versions of UML, the notation of refinement
was the notation which is now used for realization

71

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006 72

Wrap-up

Class Diagrams model statical elements (classes and
their relationships)

For use by architects and developers

Relations between classes:
association
aggregation
composition aggregation
refinement
realization
inheritance

<<refine>>

Roel Wuyts - ULB - Génie logiciel et gestion de projets - 2005/2006
73

UML models all kinds of systems.

It is a modelling language, not a process!

It consists of

✦ Views (5)

✦ Diagrams (9)

It is based on a meta model and hence the different
diagrams share similar elements

✦ and they are extensible

Wrap-up

