

Daiki Ueno, Anish Patil
Presented by

Next Generation Input Methods

Today's Topics
I.UX of Future Input Methods

by Anish
ibus-typing-booster developer

II.Architecture of Future Input Methods

by Daiki
IBus and Japanese engine developer

I. User Experience

Auto completion
Need?

Projects?

Problems?
Candidate lists

Good Dictionaries

Uniform Experience

Solutions
Tab completion

Delay while showing suggestions

Show suggestions inline

Show suggestions on fixed length bar and
select candidates using numbers

Dictionaries
Users

Use cases?

Issues?
Words are not updated frequently

Incorrect words in dictionaries

No unique upstream

Analysis on present stage

Demo
http://webwordedit-wwe.rhcloud.com/

II. Architecture

Yet another IM architecture?

Are you creating an IBus alternative?

No!
This is a renovation project

What's wrong with the IBus architecture?

Traditional IM architecture

Pinyin engine

Hangul engine

Cangjie engine

Kana Kanji engine

Language
data

GTK immodule

Panel UI

XIM server

Complex
engine

Simple
engine

Custom protocol

SCIM, etc.

Traditional IM architecture

Almost all components run in a single process

Pros

Fast response

Cons

One engine can make the whole system unusable
Some engines are very complex by nature and can be
irresponsive on high resource usage

IBus architecture
Panel UI

e.g. gnome-shell

ibus-daemon

Pinyin engine

Hangul engine

Cangjie engine

Kana Kanji engine

GTK immodule

D-Bus protocol

IBus architecture
Every component run as a separate process

Pros

Crash resistant

Stable frontend (panel) API, based on D-Bus

Cons

Slow response – IPC costs

Complicated implementation

IBus implementation issues

Slow switching of engines

The backend API is not fully asynchronous nor
cancellable

Process management glitches

No mechanism to recover crashed engine

Newly installed engines are not recognized until
ibus-daemon restarts

Small number of test cases

~30% code coverage

Our approach

Separate out unstable components only

= Complex engines like Pinyin and Kana Kanji

Provide the IM architecture itself as a library

gnome-shell can directly use it with the same
API as IBus, through gobject-introspection,

Hybrid architecture

gnome-shell

Pinyin engine

Hangul engine

Cangjie engine

Kana Kanji engine

GTK immodule

IM library

Panel UI

Hybrid architecture
Only unstable components run separately

Pros

Crash resistant

Fast response from simple engines

Stable frontend API, through gobject-introspection

Cons

Even more complicated implementation
But we can do better, using the recent inventions

gdbus-codegen, GCancellable, GTask,

Prototype: libtextinput
Claim invocation type in the XML description

In-process or out-process

Automatic crash recovery

Demo client as a Wayland input-method

Reuse IBus engines as a shared library (WIP)

Summary
IBus frontend API is stable and good,
however...

The architecture needs renovation

Fully asynchronous backend API

Smarter process management

Reduced IPC costs

More tests

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

