Next Generation Input Methods

Presented by

Daiki Ueno, Anish Patil

Today's Topics

[.UX of Future Input Methods
by Anish

ibus-typing-booster developer

II.Architecture of Future Input Methods
by Daiki

IBus and Japanese engine developer

. User Experience

Auto completion

e Need?

e Projects?

Problems?

e Candidate lists

@ Good Dictionaries
e Uniform Experience

Solutions

e Tab completion

e Delay while showing suggestions
e Show suggestions inline

e Show suggestions on fixed length bar and
select candidates using numbers

Dictionaries

e Users

e Use cases?

Issues? o

e Words are not updated frequently

e [ncorrect words in dictionaries
e No unique upstream
e Analysis on present stage

Demo o

e http://webwordedit-wwe.rhcloud.com/

I. Architecture

Yet another IM architecture? .

e Are you creating an IBus alternative?

No!

e This is a renovation project
e What's wrong with the IBus architecture?

Traditional IM architecture

SCIM, etc.

[Pinyin engine |
Panel UI y 5 —

Complex L data
Custom protocol engine

KIM server D —

Simple
engine '\

_ Cangjie engine

([Hangul engine

Traditional IM architecture 9

Almost all components run in a single process

e Pros
e Fast response
e Cons

e One engine can make the whole system unusable

« Some engines are very complex by nature and can be
irresponsive on high resource usage

IBus architecture

Panel Ul

Pinyin engine
e.g. gnome-shell

D-Bus protocol

Kana Kanji engine

ibus-daemon

Cangjie engine

GTK immodule

Hangul engine

IBus architecture o

Every component run as a separate process

e Pros

e Crash resistant
e Stable frontend (panel) API, based on D-Bus

e Cons

e Slow response - IPC costs
e Complicated implementation

Bus implementation issues

e Slow switching of engines

e The backend API is not fully asynchronous nor
cancellable

e Process management glitches

e No mechanism to recover crashed engine

e Newly installed engines are not recognized until
ibus-daemon restarts

e Small number of test cases

e ~30% code coverage

Our approach o

e Separate out unstable components only

= Complex engines like Pinyin and Kana Kaniji
e Provide the IM architecture itself as a library

e gnome-shell can directly use it with the same
API as IBus, through gobject-introspection,

Hybrid architecture

Pinyin engine Kana Kanji engine

e -

GTK immodule

Panel Ul

Cangjie engine

| Hangul engine

Hybrid architecture P

Only unstable components run separately

e Pros

e Crash resistant
e Fast response from simple engines
e Stable frontend API, through gobject-introspection

e Cons

e Even more complicated implementation

« But we can do better, using the recent inventions
gdbus-codegen, GCancellable, GTask,

Prototype: libtextinput

e Claim invocation type in the XML description

e In-process or out-process
e Automatic crash recovery

e Demo client as a Wayland input-method

e Reuse IBus engines as a shared library (WIP)

Summary P

e [Bus frontend API is stable and good,
however...

e The architecture needs renovation
e Fully asynchronous backend API
e Smarter process management
e Reduced IPC costs
e More tests

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

