
How to Contribute to the GNOME Project
Paolo Borelli∗, James Bowes†, Fernando Herrera de las Heras‡, Elijah Newren§ and Mariano Súarez-Alvarez¶

∗GNOME Foundation, Casirate d’Adda (BG), Italy,pborelli@katamail.com
†Faculty of Computer Science, Dalhousie University, Halifax, Canada B3H 1W5,bowes@cs.dal.ca

‡Tecsidel S.A., Enrique Jardiel Poncela 6, Madrid, Spain,fherrera@onirica.com
§newren@gmail.com

¶msuarezalvarez@arnet.com.ar

Abstract— This paper will cover the technical, social and
bureaucratic parts of the GNOME development process, with
the goal of allowing people who have knowledge about GNOME
to contribute to, and help improve GNOME.

Covered in this paper are useful resources for GNOME
developers, including tutorials and application programming
interface (API) documentation. Also outlined are typical tools
used by developers, such as revision control systems. GNOME-
Hello, a sample GNOME program, is also covered, to examine
the typical layout of a GNOME program’s source directory.

Many communication methods used by GNOME developers
are covered as well. Mailing lists, Internet Relay Chat, and the
World Wide Web are the three primary means of communication
within the GNOME project. The World Wide Web provides
a single-direction form of communication, usually providing
the authoritative reference for GNOME policy. Mailing lists
provide and archived, searchable method for communication.
Internet Relay Chat provides a highly interactive, informal
communication mode that is used as much for socializing as
it is for GNOME development discussion.

I. I NTRODUCTION

There has always been a strong demand at GUADEC for
tutorials and guides on how to begin development with and for
GNOME. To date, most of the focus at GUADEC has been
on content for advanced developers. This paper will assist in
filling this gap, based in part on the ongoing efforts of the
Gnome-Love project [8].

This paper will show developers who are unfamiliar with
GNOME how they can become contributors. It will cover the
technical issues of the GNOME platform and internals, and
address important details about the social and bureaucratic
parts of the GNOME development process. It is the authors’
intention to assist people in crossing the critical bridge from
having knowledge about GNOME to applying that knowledge
in a way to help improve GNOME.

II. L EARN

GNOME is a large project; it provides a comprehensive
desktop environment for the user, and so it is inevitable that
the GNOME developer platform is just as comprehensive.
Given this size, there are a large number of tools, libraries
and technologies that a potential contributor must understand.
Beyond the technical aspects of GNOME development, a
contributor must also learn thesocial aspects of contributing
to GNOME.

The learning curve of GNOME development, from a tech-
nical standpoint, is not as steep as it might first appear, after a
few basics have been learned. Contributors are not are not even
required to learn a new programming language. Granted, the
core GNOME platform and desktop is written in C, but there
are high-quality bindings available for a number of languages;
desktop application authors can use any language of their
choosing.

Many new contributors may feel tempted to start their own
project as their first attempt at working on a GNOME-related
program. Most authorities within the GNOME project will
advise against it, however [6].

A. GNOME Technologies

GNOME provides a comprehensive suite of libraries and
technologies for application development. This includes, but
is not limited to:

• GLib – Lower level functionality to enhance the C
programming experience. Many features of GLib, such
as some of its data structures or string handling routines,
may be included by default in the standard libraries of
other programming languages. Thus, for these languages,
GLib may not be as visible. GLib also provides the main
event loop for GNOME programs, and GObject (which
allows for object-oriented programming in C).

• GTK+ – The Gimp Toolkit. This is the graphical widget
library used by GNOME applications. GTK+ provides the
buttons, menu bars, and other interface elements which
allow users to interact with GNOME programs.

• ATK – The Accessibility Toolkit. Applications and toolk-
its that support ATK can be accessed through alternative
input and output methods, such as screen readers or
magnifiers.

• GConf – Provides access to a configuration database.
GConf provides a convenient method to save and load
application configurations, and user preferences.

• GStreamer – An advanced multimedia framework.
GStreamer allows applications to access and manipulate
a variety of media types in a format and location-
independent manner.

There are many excellent references, tutorials and books
available for learning how to use these libraries and technolo-
gies [5], [3], [9].



B. Jhbuild and CVS

One of the first steps in contributing to GNOME is set-
ting up a development environment. Such and environment
includes, but is not limited to, compilers and interpreters for
the contributor’s chosen programming languages, development
libraries, and tools that aid in application development (such
as glade1). Most importantly, one must have a working copy
of the program sources.

Development GNOME code is stored in the GNOME
project’s CVS2 repository. Downloading and building
GNOME sources from CVS manually can be quite compli-
cated; most developers use a program calledjhbuild which
automates the process. In addition,jhbuild will also install
the development code it downloads to a separate directory,
leaving any existing GNOME installations untouched3.

C. GNOME-Hello

Following a long-standing tradition in the hacker culture, the
first program that one should look at when starting to learn
about GNOME development is the GNOME variation of the
classic “Hello, World!”; a simple program that displays this
famous message.

GNOME-Hello can be checked out of GNOME CVS using
the command:

export CVSROOT=:pserver:anonymous\
@anoncvs.gnome.org:/cvs/gnome
cvs login
cvs -z3 co gnome-hello

Alternatively,jhbuild can be used to download GNOME-
Hello and all of its dependencies with the command:

jhbuild build gnome-hello

GNOME-Hello contains many files that are typically found
in a GNOME program:

• AUTHORS, COPYING, NEWS, README– Informa-
tive text files containing information for users. Many
GNOME programs also include aHACKINGfile, which
contains any specifics for contributing to the program.

• ChangeLog – Every time a modification is made to the
program sources, a note is written in this file. The note
details who made the change, when they made it, and
what the change was.

• Makefile.am, configure.ac, autogen.sh –
These files are part of the program’s build system.
GNOME projects use Automake, AutoConf and Libtool
to help automate building the program.

1A rapid application development tool; glade allows for point-and-click
user interface development.

2The Concurrent Versions System, available fromhttp://www.
cvshome.org . Other revision control systems popular among GNOME
developers include Subversion (http://subversion.tigris.org/ ),
and GNU Arch, which is available as thetla (http://www.gnu.org/
software/gnu-arch/ ) or baz (http://bazaar.canonical.
com/ ) implementations.

3This is important; development code can be quite unstable (prone to
crashes, for example), and should not be relied upon for normal usage.

• gnome-hello.desktop.in – During the build pro-
cess,gnome-hello.desktop is generated from this
file. The desktop file follows thefreedesktop.org
standard [2] for describing a desktop application.

• help/ – User documentation for the program, typically
written in DocBook [1] format.

• po/ – Translations for the program. GNOME uses gettext
for internationalization4.

• src/ – The directory containing the program source
files.

III. G ET INVOLVED

Open Source development and the Internet have always been
tightly associated and GNOME is no exception; communica-
tion is at the core open source software. The whole concept of
open source is about being able to share ideas, and the Internet
makes this easy to do, allowing anyone to reach a word-wide
audience.

This means that it is through the Internet that a potential
contributor can find everything he or she needs to get started:
tools, knowledge and other people who share the same goal.

The Internet isn’t only the World Wide Web; it is also mail-
ing lists, IRC, wikis and many other means of communication
which allow one to be a part of the GNOME community. What
follows is quick description of each one of these services, each
one with its own advantages and disadvantages, and its own
set of (usually unwritten) rules.

A. World Wide Web

Arguably the most familiar of all Internet technologies,
the World Wide Web provides a gateway into the GNOME
community. The official GNOME website can be reached
at http://www.gnome.org and provides a large set of
services and information. Of particular interest to a contributor
are:

• http://developer.gnome.org – Hosted here are
all of the official programming documents and API ref-
erences. Also of great interest are white-papers, Human
Interface Guidelines and the homepages of many sub-
projects like internationalization, documentation, acces-
sibility and usability.

• http://cvs.gnome.org – Hosts viewcvs, bonsai
and lxr. These are tools which allow one to see the source
code hosted on gnome cvs directly from a browser, and
perform queries against it.

• http://planet.gnome.org – A weblog aggregator
for the GNOME community. While it isn’t an ‘official’
publication, it is definitely a great way to find out what is
going on in GNOME land, both technically and socially.

• http://foundation.gnome.org – The GNOME
Foundation’s home page. The GNOME Foundation is a
non-profit organization whose goal is to further the work
of GNOME.

4The GNOME Translation Project,http://developer.gnome.org/
projects/gtp/ , hosts a number of excellent resources for translating
programs.



There are many other sites which are useful for anyone who
wants to get involved in gnome:

• http://gtk.org – GTK+ is the toolkit at the base of
GNOME.

• http://freedesktop.org – Hosts a number of
software projects and standards, all with the common
goals of improving interoperability and advancing the
state of the X desktop. Many components of GNOME
are based on freedesktop standards.

• http://gnomefiles.org – A ‘GTK+ Software
Repository’. One can find nearly all GNOME-related
projects listed here.

B. Mailing Lists

Mailing lists provide archival backup of all discussion
which takes place on them. Because of this, many discussions
regarding decisions on policy or the direction of GNOME will
occur on mailing lists.

The GNOME mailing lists are hosted on
mail.gnome.org . From http://mail.gnome.org ,
one can subscribe to GNOME mailing lists, modify existing
subscriptions, or search through the mailing list archives.

Some important lists that all GNOME developers may want
to subscribe to include:

• desktop-devel-list – The list that no GNOME
hacker can do without. The Desktop development list
plays host to announcements about experimental new
features, discussion about the future of GNOME software
modules, and matters of development policy. It should be
noted, however, that this list is not for general discussion;
one should ensure that any posts made to this list are
necessary, and informative.

• gnome-announce-list – New software releases are
announced on this list. Following it is a good way to keep
track of new advancements in the GNOME desktop and
related programs.

• foundation-list – The general discussion mailing
list for the GNOME Foundation. This list is a good place
to talk about advocating the use of GNOME, or matters
of foundation policy.

• gnome-love – A list for new developers to get help,
and old developers to give help. The theme of the
GNOME Love list is helping new developers get involved
with GNOME, but off-topic posts are not discouraged.

Contributors may also wish to subscribe to the mailing list
relating to the specific program they are working on, if it
exists, or to other broad-topic lists, likeusability-list
(for discussion regarding human-computer interaction topics
in GNOME).

C. Internet Relay Chat

Internet Relay Chat (IRC) is commonly used within the
GNOME project. IRC lets developers communicate instantly,
without the lag associated with e-mail. Typically, IRC has a
much more relaxed atmosphere than e-mail, and so IRC is used

as often for socializing as it is for facilitating work within the
GNOME project.

IRC groups its users intochannels(like chat rooms), where
each channel can have its own theme, and a user can join an
arbitrary number of channels. Most GNOME and GNOME-
related IRC channels can be found on the GIMPNet IRC
network5 (accessible through theirc.gnome.org server,
for example). A good IRC client for the GNOME desktop is
XChat6. Some important IRC channels for GNOME contrib-
utors include:

• #gnome – A channel for general discussion about
GNOME and technical support for using GNOME. It is
mainly for users.

• #gnome-hackers – Most GNOME developers use this
channel, either for technical discussion, or just chatting.

• #gnome-love – Come here if you need any help
with development, or beginning to develop GNOME and
GNOME applications.

• #bugs – Discussion related to bug fixing and bug triage
using GNOME’s bugzilla installation.

Like the mailing lists, there are also IRC channels for
specific programs, user groups (such as #gnome-fr, for French-
speaking GNOME users), or language bindings. A list of all
IRC channels can be seen by typing/list into an IRC client
when connected to a server (this list can be quite long).

D. Wiki

Wikis have recently been gaining popularity as collaborative
workspaces among Internet users. A wiki is a content man-
agement system that allows anyone to easily alter the content
on existing pages, or to create new pages.

The GNOME project uses theGNOME Livewiki, located
at http://live.gnome.org . Most of the content on
GNOME Live is geared towards developers; GNOME Live
is not really geared towards use by general GNOME users.

Like the mailing lists and IRC, GNOME’s wiki has
workspaces for various GNOME programs and work groups.

E. Learn the Culture

A particularly attractive feature of the GNOME project, like
many open-source software projects, is its strong community.
Typically, one can learn a lot by ‘lurking’, or simply watching
what others do, before actively participating. By subscribing
to and reading some of the GNOME mailing lists, reading
Planet GNOME, and following the conversation in some
GNOME IRC channels, a contributor can get a sense of what
is acceptable within the GNOME community.

Many essays are available on the topic of integrating ones
self into the open-source culture [7], [6].

5Other channels important to GNOME developers (#gstreamer, for instance)
are on the Freenode network. Seehttp://www.freenode.net for more
information on Freenode.

6XChat is available fromhttp://www.xchat.org . Another option is
xchat-gnome, a front-end for XChat that aims to integrate better with the
GNOME desktop. It is available fromhttp://xchat-gnome.navi.
cx/ .



1) A Note on Etiquette:Most people working on GNOME
are doing so on their own time, and out of a love for the
project. This should be acknowledged and respected; Most
contributors to the GNOME project have limited time, and
want to use it as effectively as possible. Many of the GNOME
mailing lists discourage posts that do not relate to the desig-
nated topic of the list. Similarly,flamingand trolling (posting
intentionally insulting and hostile messages) are almost uni-
versally discouraged within the GNOME community.

IV. F IND TASKS

It is very common in the open source community to hear
that a program or a feature has been developed “to scratch
an itch” by the programmer. In other words, many features
are written to satisfy a need felt by the programmer herself.
Doing this is good because the developer has an high interest
in implementing the feature and knows exactly how he or she
wants the program to behave.

This is not always the case, however, so the question that
arises is: where can a potential contributor find a list of ideas to
implement or of bugs to be fixed? The answer is not universal,
but in the GNOME project the first place to look is GNOME
bugzilla, athttp://bugzilla.gnome.org . Bugzilla is
a web based bug tracking system where most of the GNOME
projects keep a list of bugs and requests for enhancements.

A very useful feature which bugzilla provides is the ability
to compile reports for bugs which match a particular set of
requirements. Of particular interest to a new contributor is the
gnome-lovereport, located athttp://bugzilla.gnome.
org/reports/gnome-love.cgi , which lists all the bugs
that each module maintainer has marked with thegnome-love
keyword. The keyword indicates that the bug can be solved
without knowing all the inner details of the module’s code-
base, and that the maintainer would appreciate help on it, since
they probably do not have the time to fix the bug herself.
The bug report often contains suggestions on getting started
in fixing the bug, as well.

Other common places to look for suggestion on things
to implement areTODOfiles that many projects include in
their source distribution, web pages on the project web site,
and wiki pages, where many maintainers keep a road-map
containing the features they plan to implement in the program.
Failing these, a contributor may ask the module maintainers
directly what kind of help they would appreciate, for instance
by sending an e-mail to the appropriate mailing list.

Once a contributor has chosen what to work on, it is
important that they get in touch with the maintainers of the
module. This way, the contributor can make sure that the bug
is still present in the latest version of the program, that the
eventual new feature would be appreciated and that someone
else is not already working on the problem.

V. GET YOUR WORK NOTICED

Once a contributor finishes the desired modifications to their
copy of the code, he needs to submit themupstream(to the
maintainer of the package) so the changes can be integrated

into GNOME. The preferred way to do it is by creating a
patch, which is a text file containing the differences between
the modified copy of the source code and the original. Patches
are created with thediff(1) program and can be applied
with the patch(1) program. Nearly all GNOME module
maintainers prefer the use of theunified format (obtained
by using the-u option) for patches instead of the default
format produced bypatch . A more common way to create a
patch, if the programmer has checked the source code out of
cvs and then modified it, is by issuing the commandcvs
diff -up > foo.patch which outputs the differences
between the local copy and the cvs repository into the text
file foo.patch .

There are lots of suggestions on how to create a patch
properly. It is strongly encouraged that one follow the same
coding style used in the rest of the program, and to in-
clude a ChangeLog entry. This way, it is easier to under-
stand what was changed and to properly credit each con-
tributor. A more complete list of guidelines for creating
a patch are athttp://live.gnome.org/GnomeLove/
SubmittingPatches .

Once the patch file is ready and tested it should be attached
in bugzilla to the relevant bug report or, if one doesn’t exist
yet, to a newly created bugreport. Depending on the module,
it may also be a good idea to send the patch to the relevant
mailing list.

Usually patches are more than welcome by maintainers, but
it may happen that they do not have time to review the patch
in a timely manner. The contributor should not be discouraged
by the lack of feedback from the maintainer and should from
time to time remind the maintainer.

As the Pragmatic Programmers say,Sign Your Work[4]. A
GNOME contributor should be proud of the work they have
done, and not be embarrassed to take responsibility for the
contribution that they have made.

ACKNOWLEDGEMENTS

The authors would like to thank Sebastien Bacher, James M.
Cape, Davyd Madeley, Shaun McChance, Sriram Ramkrishna,
and the rest of the#gnome-love idlers.

REFERENCES

[1] “The docbook document type,” January 2005. [Online]. Available:
http://www.docbook.org/specs/cd-docbook-docbook-4.4.html

[2] P. Brown, J. Blanford, and O. Taylor, “Desktop entry specification.”
[Online]. Available: http://standards.freedesktop.org/desktop-entry-spec/
latest/

[3] T. Gale, I. Main, and the GTK team, “Gtk+ 2.0 tutorial.” [Online].
Available: http://www.gtk.org/tutorial/

[4] A. Hunt and D. Thomas,The Pragmatic Programmer. Addison-Wesley,
2000, ch. 8, pp. 258–259.

[5] E. Newren, “Developing with gnome,” 2004. [Online]. Available:
http://www.gnome.org/∼newren/tutorials/developing-with-gnome/

[6] H. Pennington, “Working on free software.” [Online]. Available:
http://www106.pair.com/rhp/hacking.html

[7] E. S. Raymond, “How to become a hacker,” 2001. [Online]. Available:
http://www.catb.org/∼esr/faqs/hacker-howto.html

[8] The Gnome-Love Project, “Gnome-love,” wiki workspace. [Online].
Available: http://live.gnome.org/GnomeLove

[9] M. Warkus,The Official GNOME 2 Developer’s Guide. No Starch Press,
2004.


